60.4k views
1 vote
1. Find the real or imaginary solutions for the following equation by factoring.125x3 - 27 = 0

1 Answer

6 votes

The equation is given to be:


125x^3-27=0

Applying the exponent rules, we have:


\Rightarrow(5x)^3-3^3=0

Recall the Difference of Cubes formula given to be:


x^3-y^3=\mleft(x-y\mright)\mleft(x^2+xy+y^2\mright)

Therefore, the equation becomes:


\begin{gathered} (5x-3)(\lbrack5x\rbrack^2+\lbrack3*5x\rbrack+3^2)=0 \\ (5x-3)(25x^2+15x+9)=0 \end{gathered}

Using the Zero Factor Principle, we have that:


\begin{gathered} (x-a)(x-b)=0 \\ \text{then} \\ x-a=0 \\ \text{and} \\ x-b=0 \end{gathered}

Therefore, we can have:


\begin{gathered} 5x-3=0 \\ 5x=3 \\ x=(3)/(5) \end{gathered}

and


25x^2+15x+9=0

Solving the equation using the Quadratic Formula:


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

From the Quadratic Equation, we have:


\begin{gathered} a=25 \\ b=15 \\ c=9 \end{gathered}

Therefore, we have:


x=\frac{-15\pm\sqrt[]{15^2-\lbrack4*25*9\rbrack}}{2*25}=\frac{-15\pm\sqrt[]{225-900}}{50}=\frac{-15\pm\sqrt[]{-675}}{50}

Recall that:


\sqrt[]{-1}=i

Therefore, we have that:


x=\frac{-15\pm\sqrt[]{-1*675}}{50}=\frac{-15\pm i\sqrt[]{225*3}}{50}=\frac{-15\pm15i\sqrt[]{3}}{50}

Hence, the values of x can be:


x=\frac{-15_{}+15i\sqrt[]{3}}{50}=\frac{5(-3+3i\sqrt[]{3})}{50}=\frac{-3+3i\sqrt[]{3}}{10}=-(3)/(10)+i\frac{3\sqrt[]{3}}{10}

or


x=\frac{-15_{}-15i\sqrt[]{3}}{50}=\frac{5(-3-3i\sqrt[]{3})}{50}=\frac{-3-3i\sqrt[]{3}}{10}=-(3)/(10)-i\frac{3\sqrt[]{3}}{10}

ANSWER:


\begin{gathered} x=(3)/(5) \\ x=-(3)/(10)+i\frac{3\sqrt[]{3}}{10} \\ x=-(3)/(10)-i\frac{3\sqrt[]{3}}{10} \end{gathered}

User Manik Arora
by
4.6k points