The equation is given to be:

Applying the exponent rules, we have:

Recall the Difference of Cubes formula given to be:

Therefore, the equation becomes:

Using the Zero Factor Principle, we have that:

Therefore, we can have:

and

Solving the equation using the Quadratic Formula:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
From the Quadratic Equation, we have:

Therefore, we have:
![x=\frac{-15\pm\sqrt[]{15^2-\lbrack4*25*9\rbrack}}{2*25}=\frac{-15\pm\sqrt[]{225-900}}{50}=\frac{-15\pm\sqrt[]{-675}}{50}](https://img.qammunity.org/2023/formulas/mathematics/college/9u2w0ont76hlaxt9o433w6tdr0jyfzhbpw.png)
Recall that:
![\sqrt[]{-1}=i](https://img.qammunity.org/2023/formulas/mathematics/high-school/6auedmvsax8nlo4hpms2kngcv15a6lmlel.png)
Therefore, we have that:
![x=\frac{-15\pm\sqrt[]{-1*675}}{50}=\frac{-15\pm i\sqrt[]{225*3}}{50}=\frac{-15\pm15i\sqrt[]{3}}{50}](https://img.qammunity.org/2023/formulas/mathematics/college/hc9mp24v4jyll3sh24icia3p4fme7z5ohj.png)
Hence, the values of x can be:
![x=\frac{-15_{}+15i\sqrt[]{3}}{50}=\frac{5(-3+3i\sqrt[]{3})}{50}=\frac{-3+3i\sqrt[]{3}}{10}=-(3)/(10)+i\frac{3\sqrt[]{3}}{10}](https://img.qammunity.org/2023/formulas/mathematics/college/b9fw86nrnuqglc0vwf8lsqn4qtw725dd8f.png)
or
![x=\frac{-15_{}-15i\sqrt[]{3}}{50}=\frac{5(-3-3i\sqrt[]{3})}{50}=\frac{-3-3i\sqrt[]{3}}{10}=-(3)/(10)-i\frac{3\sqrt[]{3}}{10}](https://img.qammunity.org/2023/formulas/mathematics/college/cs8h0ddwg0y4sy12rt5plbykvjpofi89en.png)
ANSWER:
![\begin{gathered} x=(3)/(5) \\ x=-(3)/(10)+i\frac{3\sqrt[]{3}}{10} \\ x=-(3)/(10)-i\frac{3\sqrt[]{3}}{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o7dt2t34rkjdt853osqjig5nqrpsc74bps.png)