Step 1. Reflect each point over the x-axis.
To make an x-axis reflection, we use the following rule:
![(x,y)\longrightarrow(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/tlsjtkzhl1nl9js35repoulhywtkphfkrr.png)
Applying this to points A, B, and C, where A', B' and C' are the points after the reflection:
![\begin{gathered} A(-1,-3)\longrightarrow A^(\prime)(-1,3) \\ B(-2,-2)\longrightarrow B^(\prime)(-2,2) \\ C(1,4)\longrightarrow C^(\prime)(1,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r2y463l4fvuilehetwefd3yg8bzg33ihpj.png)
Step 2. Rotate the points 90° counterclockwise.
To make a 90° counterclockwise rotation we use the following rule:
![(x,y)\longrightarrow(-y,x)](https://img.qammunity.org/2023/formulas/mathematics/college/d15fejdryniqu6ioq28bqnq8b743pdvgnk.png)
Applying this to the points A', B', and C', where A'', B'', and C'' will be the points after the rotation:
![A^(\prime)(-1,3)\longrightarrow A^(\doubleprime)(-3,-1)](https://img.qammunity.org/2023/formulas/mathematics/college/np3w1ktjcwtxez7tj3redx40msn4rs2vlf.png)
As we can see, after the rotation, the new x coordinate is the old y coordinate but with the opposite sign, and the new y coordinate is the old x coordinate.
We do the same for B', and C':
![\begin{gathered} B^(\prime)(-2,2)\longrightarrow B^(\doubleprime)(-2,-2) \\ C^(\prime)(1,-4)\longrightarrow(4,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gtshj83ojilpf2nuyl1sj2xuspaddz56kp.png)
Answer:
A''(-3,-1), B''(-2,-2), C''(4,1)