Part C.
Given:
Mass of ball P, Mp = mass of ball Q, MQ
Volume of P, Vp = 2 times volume of ball Q, 2VQ
Let's determine the ball with the greater density.
Apply the formula:
![\rho=(m)/(v)](https://img.qammunity.org/2023/formulas/chemistry/high-school/9d4jzrpa9t4i9d2zurqo7vz9fhu85i1q0o.png)
Now, for densities of both balls, we have:
![\begin{gathered} \rho_p=(m_p)/(v_p)=\frac{m_{}}{2v_Q} \\ \\ \rho_Q=(m)/(v_Q) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fj2tp6xo3zig34lvlrggsrxafgmq8q0iem.png)
Now, divide density of P by density of Q:
![\begin{gathered} (\rho_P)/(\rho_Q)=((m)/(2v_Q))/((m)/(v_Q)) \\ \\ =(m)/(2v_Q)*(v_Q)/(m) \\ \\ =(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ckt3r9d7u753y52y4in9ilikgiyhwdfmkf.png)
Therefore, the density of ball P is 1/2 the density of the density of ball Q.
Hence, ball Q will have a greater density.
• (d). ,Given:
Volume of ball X = 2 * volume of ball Y
Mass of X = 1/2 * mass of ball Y.
We have:
![\begin{gathered} \rho_X=((1)/(2)m_Y)/(2v_Y) \\ \\ \rho_Y=(m_Y)/(v_Y) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vwgvn03tnkwfbzof4uo9tt1r1xn8zqrpjo.png)
Divide density of ball X by that of ball Y:
![\begin{gathered} (\rho_X)/(\rho_Y)=(((1)/(2)m_Y)/(2v_Y))/((m_Y)/(v_Y)) \\ \\ =((1)/(2)m_Y)/(2v_Y)*(v_Y)/(m_Y) \\ \\ =(1)/(2)*(1)/(2) \\ \\ =(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/em6gppju9iei1v7ig1vo9zeykb2nw3mqom.png)
Therefore, the density of ball X is 1/4 the density of ball Y.
Hence, ball Y will have the greater density.
ANSWER:
(c). Ball Q has the greater density
(d). Ball Y has the greater density