Given
Population of the world in 1987 = 5 billion
Annual growth rate = 1.3% per year
Required: The projected population in 2020
The exponential population growth formula is defined as:
![\begin{gathered} P\text{ = P}_0e^(rt) \\ Where\text{ P}_0\text{ is the initial population} \\ r\text{ is the \% growth rate} \\ and\text{ t is the time in years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qy8rsufu3xjij50xl6nbb63ltyx6f8i04s.png)
Substituting the given values:
![P(t)\text{ = 5000000000e}^(0.013t)](https://img.qammunity.org/2023/formulas/mathematics/college/k12mm59yzckt98p5og1pbtx9e6tqwp36oc.png)
After 2020, t = 33 years
Hence, the population after 33 years is:
![\begin{gathered} P(t=13)\text{ = 5000000000 }*\text{ e}^(0.013*33) \\ =\text{ 7678605171.987} \\ =\text{ 7678605172.0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zf4mznhpkjpon7if8srwo1e5e1uwf5kkt7.png)
Hence, the estimated population of the world in 2020 is 7678605172.0