176k views
3 votes
Find the absolute extrema of the following function on the indicted interval. F(x)=x^3-3x on [0,3]

1 Answer

5 votes

F(x)=x^3-3x

First, let's find the derivative:


\begin{gathered} F^(\prime)(x)=3x^(3-1)-3(1) \\ F^(\prime)(x)=3x^2-3 \end{gathered}

Let's find the critical values:


\begin{gathered} F^(\prime)(x)=0 \\ 3x^2-3=0 \\ x^2-1=0 \\ x^2=1 \\ so: \\ x=1 \\ or \\ x=-1 \end{gathered}

Since we need to find the absolute extrema for the interval [0,3], we only take x = 1.

Evaluate:


\begin{gathered} x=0 \\ F(0)=0 \\ ---------- \\ x=1 \\ F(1)=1-3=-2 \\ ------- \\ x=3 \\ F(3)=27-9=18 \end{gathered}

Since F(1)

User Bmilesp
by
5.2k points