Answer:
Vertex = (-2, - 9)
X- intercept: (-5, 0), (1, 0)
y-intercept: (0, -5)
Step-by-step explanation:
If we have a quadratic equation of the form
![y=(x-k)^2+h](https://img.qammunity.org/2023/formulas/mathematics/college/4q284jyj4etkkzyykiy8wln9d8g4l44qki.png)
then the vertex is given by
![\text{vertex}=(k,h)](https://img.qammunity.org/2023/formulas/mathematics/college/ksd3t2acuockfl8ejpnbqg7tx7pxdg5rv6.png)
Now, in our case we have
![y=(x+2)^2-9](https://img.qammunity.org/2023/formulas/mathematics/college/uh5erg0vzol5ipkt1xo7egjqu4dj2qy0w9.png)
meaning k = -2 and h = - 9; therefore, the vertex is at
![vertex=(-2,9)](https://img.qammunity.org/2023/formulas/mathematics/college/dus55l8v1vq85v4lyb1l0c0sbtx5fbssej.png)
The intercepts of the parabola are the points where it intersects the x-axis. This happens when y = 0.
Putting in y = 0 in the equation for the parabola gives
![0=(x+2)^2-9](https://img.qammunity.org/2023/formulas/mathematics/college/fhq3ae1nawwgxmbpnk6aqr9klxnpwrgihj.png)
adding 9 to both sides gives
![(x+2)^2=9](https://img.qammunity.org/2023/formulas/mathematics/college/h622wru0b0ndz7tlfkla6l4fj3js6ul6xf.png)
taking the square root of both sides gives
![\sqrt[]{(x+2)^2}=\sqrt[]{9}](https://img.qammunity.org/2023/formulas/mathematics/college/p5uvfzd9c0jiqmhukbw1tao65kji4zp86l.png)
![x+2=\pm3](https://img.qammunity.org/2023/formulas/mathematics/college/v895pk7twfdiri3a0jdhbz1y2h4ipgn1zc.png)
subtracting 2 from both sides gives
![x=\pm3-2](https://img.qammunity.org/2023/formulas/mathematics/college/r4ml0nhlhwynuav9naaqltfnh2uv4e1duk.png)
which gives us two solutions
![\begin{gathered} x=-3-2=-5 \\ x=3-2=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2vrf2nm0u4bx0nsc5vc5xvyq9uthnuflm6.png)
Hence, the x-intercepts of the parabola are at
![\begin{gathered} (-5,0) \\ (1,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uwn62xcbaeuu7lzymw4yvj5iphjrvjhfqx.png)
Now, we find the y-intercept.
The y-intercept is the point at which the parabola intersects the y-axis.
This happens when x = 0.
Putting in x = 0 in the equation for the parabola gives
![\begin{gathered} y=(x+2)^2-9 \\ y=(0+2)^2-9 \\ y=4-9 \\ \boxed{y=-5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wot1ii8jy9kbmuxayogbwm598ip5itmdqo.png)
Hence, the y-intercept is at
![(0,-5)](https://img.qammunity.org/2023/formulas/mathematics/college/1hw4vtdydq1jahp6tymkol54b0y7jvtlhs.png)
To summarize our results,
Vertex = (-2, - 9)
X- intercept: (-5, 0), (1, 0)
y-intercept: (0, -5)