103k views
4 votes
What method of differentiation is necessary, and what is the derivative?

What method of differentiation is necessary, and what is the derivative?-example-1
User Haydi
by
8.1k points

1 Answer

4 votes

The given function is


f(x)=In\frac{2x^3}{\sqrt[]{x}}

We need to use the derivation of some standard functions.

Recall that


(d)/(dx)\text{In u(x)}=(1)/(x)u^(\prime).

Derivation of rational functions with quotient rule.


(d)/(dx)((u(x))/(v(x)))=(vu^(\prime)-uv^(\prime))/(v^2)

Differentiate the given function with respect to x, we get


f^(\prime)(x)=(d)/(dx)(In\frac{2x^3}{\sqrt[]{x}})


\text{Use }(d)/(dx)\text{In u(x)}=(1)/(x)u^(\prime).


f^(\prime)(x)=\frac{1}{\frac{2x^3}{\sqrt[]{x}}}(d)/(dx)(\frac{2x^3}{\sqrt[]{x}})


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}(d)/(dx)(\frac{2x^3}{\sqrt[]{x}})


\text{Use }(d)/(dx)((u(x))/(v(x)))=(vu^(\prime)-uv^(\prime))/(v^2).


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\sqrt[]{x}(2*3x^2)-2x^3((1)/(2)x^{-(1)/(2)})}{(\sqrt[]{x})^2}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{6x^2\sqrt[]{x}-\frac{x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\frac{6x^2\sqrt[]{x}*\sqrt[]{x}}{\sqrt[]{x}}-\frac{x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\frac{6x^3-x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{5x^3^{}}{\sqrt[]{x}}*(1)/(x)


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{5x^3^{}}{\sqrt[]{x}}*(1)/(x)


f^(\prime)(x)=(5)/(2x)

Hence the required differentiation is


f^(\prime)(x)=(5)/(2x)

User Chris Neitzer
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories