103k views
4 votes
What method of differentiation is necessary, and what is the derivative?

What method of differentiation is necessary, and what is the derivative?-example-1
User Haydi
by
4.3k points

1 Answer

4 votes

The given function is


f(x)=In\frac{2x^3}{\sqrt[]{x}}

We need to use the derivation of some standard functions.

Recall that


(d)/(dx)\text{In u(x)}=(1)/(x)u^(\prime).

Derivation of rational functions with quotient rule.


(d)/(dx)((u(x))/(v(x)))=(vu^(\prime)-uv^(\prime))/(v^2)

Differentiate the given function with respect to x, we get


f^(\prime)(x)=(d)/(dx)(In\frac{2x^3}{\sqrt[]{x}})


\text{Use }(d)/(dx)\text{In u(x)}=(1)/(x)u^(\prime).


f^(\prime)(x)=\frac{1}{\frac{2x^3}{\sqrt[]{x}}}(d)/(dx)(\frac{2x^3}{\sqrt[]{x}})


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}(d)/(dx)(\frac{2x^3}{\sqrt[]{x}})


\text{Use }(d)/(dx)((u(x))/(v(x)))=(vu^(\prime)-uv^(\prime))/(v^2).


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\sqrt[]{x}(2*3x^2)-2x^3((1)/(2)x^{-(1)/(2)})}{(\sqrt[]{x})^2}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{6x^2\sqrt[]{x}-\frac{x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\frac{6x^2\sqrt[]{x}*\sqrt[]{x}}{\sqrt[]{x}}-\frac{x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{\frac{6x^3-x^3}{\sqrt[]{x}}}{x}


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{5x^3^{}}{\sqrt[]{x}}*(1)/(x)


f^(\prime)(x)=\frac{\sqrt[]{x}}{2x^3}*\frac{5x^3^{}}{\sqrt[]{x}}*(1)/(x)


f^(\prime)(x)=(5)/(2x)

Hence the required differentiation is


f^(\prime)(x)=(5)/(2x)

User Chris Neitzer
by
3.8k points