216k views
0 votes
How can I find X and Y in this diagram?

How can I find X and Y in this diagram?-example-1
User Mikrasya
by
4.8k points

1 Answer

3 votes

On the diagram, there is a quadrilateral within a circle. As you can see, each corner of the quadrilateral touches the circumference of the circle, this indicates that this quadrilateral is a cyclic quadrilateral.

A characteristic of a cyclic quadrilateral is that the opposite angles are supplementary.

Knowing this, you can determine the values of x and y as follows:


\begin{gathered} x+100º=180º\text{ \rightarrow{}subtract 100º to both sides of the equal sign} \\ x+100º-100º=180º-100º \\ x=80º \end{gathered}
\begin{gathered} 2y+102º=180º\text{ \rightarrow subtract 102º to both sides of the expression} \\ 2y+102º-102º=180º-102º \\ 2y=78º\text{ \rightarrow Divide both sides by 2} \\ (2y)/(2)=(78º)/(2) \\ y=39º \end{gathered}

The value of x is 80º and the value of y is 39º

How can I find X and Y in this diagram?-example-1
User Kruczy
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.