SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given function
![f(x)=x^6(x-4)^4(x+9)](https://img.qammunity.org/2023/formulas/mathematics/college/96r5cis1km2h3p5sxd00astjo3z2pt18vk.png)
STEP 2: Define zeroes of a function
The zeros of a function are the values of x when f(x) is equal to 0. Find x such that f(x)=0
For the given function, the zeroes can be gotten as:
![\begin{gathered} x=0 \\ (x-4)=0,x-4=0,x=0+4,x=4 \\ (x+9)=0,x+9=0,x=0-9,x=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/as1surzn45mnhahxu7pp4de82gv98r5wzf.png)
STEP 3: Get the multiciplicity
The multiplicity of each zero is the number of times that its corresponding factor appears. In other words, the multiplicities are the powers.
![\begin{gathered} x^6\Rightarrow\text{ multiciplicity is 6} \\ (x-4)^4\Rightarrow\text{multiciplicity is }4 \\ (x+9)\Rightarrow\text{multiciplicity is }1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hild46ewg6wosucbgmm8i8zq6btmcoknfm.png)
Hence, the real zeroes and the multiciplicity of the function are:
![\begin{gathered} 0,6 \\ 4,4 \\ -9,1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9w0zcrmn7x7mpb3xod4p7j0qjvdwpkogoi.png)