148k views
3 votes
Find the area of each sector. Round to the nearest hundredth place

Find the area of each sector. Round to the nearest hundredth place-example-1
User Spankied
by
7.3k points

1 Answer

4 votes

The formula to find the area of ​​a circular sector if the angle is given in degrees is


\text{ Area of sector }=\frac{\theta}{360\text{\degree}}\cdot\pi r^2

Where

So, for the area of ​​the white circular sector you have:


\begin{gathered} \theta=32\text{\degree} \\ r=27.1\operatorname{mm} \\ \text{ Area of sector white }=\frac{32\text{\degree}}{360\text{\degree}}\cdot\pi(27.1mm)^2 \\ \text{ Area of sector white }=(4)/(45)\cdot\pi\cdot(27.1)^2mm^2 \\ \text{ Area of sector white }=(4)/(45)\cdot\pi\cdot734.41mm^2 \\ \text{ Area of sector white }=205.09mm^2 \end{gathered}

And for the area of ​​the gray circular sector you have:


\begin{gathered} \theta=360\text{\degree}-32\text{\degree}=328\text{\degree} \\ r=27.1\operatorname{mm} \\ \text{ Area of sector gray }=\frac{328\text{\degree}}{360\text{\degree}}\cdot\pi(27.1mm)^2 \\ \text{ Area of sector gray }=(41)/(45)\cdot\pi\cdot(27.1)^2mm^2 \\ \text{ Area of sector gray }=(41)/(45)\cdot\pi\cdot734.41mm^2 \\ \text{ Area of sector gray }=2102.13mm^2 \end{gathered}

Find the area of each sector. Round to the nearest hundredth place-example-1
User Joshua Dyck
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories