148k views
3 votes
Find the area of each sector. Round to the nearest hundredth place

Find the area of each sector. Round to the nearest hundredth place-example-1
User Spankied
by
5.0k points

1 Answer

4 votes

The formula to find the area of ​​a circular sector if the angle is given in degrees is


\text{ Area of sector }=\frac{\theta}{360\text{\degree}}\cdot\pi r^2

Where

So, for the area of ​​the white circular sector you have:


\begin{gathered} \theta=32\text{\degree} \\ r=27.1\operatorname{mm} \\ \text{ Area of sector white }=\frac{32\text{\degree}}{360\text{\degree}}\cdot\pi(27.1mm)^2 \\ \text{ Area of sector white }=(4)/(45)\cdot\pi\cdot(27.1)^2mm^2 \\ \text{ Area of sector white }=(4)/(45)\cdot\pi\cdot734.41mm^2 \\ \text{ Area of sector white }=205.09mm^2 \end{gathered}

And for the area of ​​the gray circular sector you have:


\begin{gathered} \theta=360\text{\degree}-32\text{\degree}=328\text{\degree} \\ r=27.1\operatorname{mm} \\ \text{ Area of sector gray }=\frac{328\text{\degree}}{360\text{\degree}}\cdot\pi(27.1mm)^2 \\ \text{ Area of sector gray }=(41)/(45)\cdot\pi\cdot(27.1)^2mm^2 \\ \text{ Area of sector gray }=(41)/(45)\cdot\pi\cdot734.41mm^2 \\ \text{ Area of sector gray }=2102.13mm^2 \end{gathered}

Find the area of each sector. Round to the nearest hundredth place-example-1
User Joshua Dyck
by
4.7k points