Given:
A quarterback throws a football with a velocity of 41 mph and a direction of 168°.
The wind on the field is 11 mph with a direction of 339°
So, there are 2 vectors:
![\begin{gathered} v=41\angle168\degree \\ w=11\angle339\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/njavu92md50dl61a0oe4hcy4gcvhsx8j1w.png)
We will find the resultant speed as the sum of the vectors v and w
![\begin{gathered} R=v+w=41\angle168\degree+11\angle339\degree \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h4ks8178gvwzq8nkchboz8554d11voklzq.png)
To find the sum of the vectors, convert from the polar form to the rectangular form:
![\begin{gathered} R=(41\cos 168+11\cos 339)i+(41\sin 168+11\sin 339)j \\ R=-29.835i+4.582j \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lqcfwco4hrn0cri1jdz6fyl5odrr8u6prz.png)
Now, we will convert from the rectangular form to the polar form to express the resultant as magnitude and angle:
![\begin{gathered} |R|=\sqrt[]{(-29.835)^2+(4.582)^2}=30.185 \\ \theta=\tan ^(-1)(4.582)/(-29.835)\approx171.268 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c8h9s87ij7bt3by2ff4oqddkyfe2ey9dug.png)
So, the answer will be the second option: 30.185, 171°