149k views
24 votes
Show work please
\sqrt(x+12)-\sqrt(2x+1)=1

User Mujaffars
by
3.6k points

1 Answer

8 votes

Answer:


x=4

Explanation:

Given
\displaystyle\\√(x+12)-√(2x+1)=1, start by squaring both sides to work towards isolating
x:


\displaystyle\\\left(√(x+12)-√(2x+1)\right)^2=\left(1\right)^2

Recall
(a-b)^2=a^2-2ab+b^2 and
√(a)\cdot √(b)=√(a\cdot b):


\displaystyle\\\left(√(x+12)-√(2x+1)\right)^2=\left(1\right)^2\\\implies x+12-2√((x+12)(2x+1))+2x+1=1

Isolate the radical:


\displaystyle\\x+12-2√((x+12)(2x+1))+2x+1=1\\\implies -2√((x+12)(2x+1))=-3x-12\\\implies √((x+12)(2x+1))=(-3x-12)/(-2)

Square both sides:


\displaystyle\\(x+12)(2x+1)=\left((-3x-12)/(-2)\right)^2

Expand using FOIL and
(a+b)^2=a^2+2ab+b^2:


\displaystyle\\2x^2+25x+12=(9)/(4)x^2+18x+36

Move everything to one side to get a quadratic:


\displaystyle-(1)/(4)x^2+7x-24=0

Solving using the quadratic formula:

A quadratic in
ax^2+bx+c has real solutions
\displaystyle x=(-b\pm √(b^2-4ac))/(2a). In
\displaystyle-(1)/(4)x^2+7x-24, assign values:


\displaystyle \\a=-(1)/(4)\\b=7\\c=-24

Solving yields:


\displaystyle\\x=\frac{-7\pm \sqrt{7^2-4\left(-(1)/(4)\right)\left(-24\right)}}{2\left(-(1)/(4)\right)}\\\\x=(-7\pm √(25))/(-(1)/(2))\\\\\begin{cases}x=(-7+5)/(-0.5)=(-2)/(-0.5)=\boxed{4}\\x=(-7-5)/(-0.5)=(-12)/(-0.5)=24 \:(\text{Extraneous})\end{cases}

Only
x=4 works when plugged in the original equation. Therefore,
x=24 is extraneous and the only solution is
\boxed{x=4}

User Umesh Patil
by
4.0k points