149k views
24 votes
Show work please
\sqrt(x+12)-\sqrt(2x+1)=1

User Mujaffars
by
7.6k points

1 Answer

8 votes

Answer:


x=4

Explanation:

Given
\displaystyle\\√(x+12)-√(2x+1)=1, start by squaring both sides to work towards isolating
x:


\displaystyle\\\left(√(x+12)-√(2x+1)\right)^2=\left(1\right)^2

Recall
(a-b)^2=a^2-2ab+b^2 and
√(a)\cdot √(b)=√(a\cdot b):


\displaystyle\\\left(√(x+12)-√(2x+1)\right)^2=\left(1\right)^2\\\implies x+12-2√((x+12)(2x+1))+2x+1=1

Isolate the radical:


\displaystyle\\x+12-2√((x+12)(2x+1))+2x+1=1\\\implies -2√((x+12)(2x+1))=-3x-12\\\implies √((x+12)(2x+1))=(-3x-12)/(-2)

Square both sides:


\displaystyle\\(x+12)(2x+1)=\left((-3x-12)/(-2)\right)^2

Expand using FOIL and
(a+b)^2=a^2+2ab+b^2:


\displaystyle\\2x^2+25x+12=(9)/(4)x^2+18x+36

Move everything to one side to get a quadratic:


\displaystyle-(1)/(4)x^2+7x-24=0

Solving using the quadratic formula:

A quadratic in
ax^2+bx+c has real solutions
\displaystyle x=(-b\pm √(b^2-4ac))/(2a). In
\displaystyle-(1)/(4)x^2+7x-24, assign values:


\displaystyle \\a=-(1)/(4)\\b=7\\c=-24

Solving yields:


\displaystyle\\x=\frac{-7\pm \sqrt{7^2-4\left(-(1)/(4)\right)\left(-24\right)}}{2\left(-(1)/(4)\right)}\\\\x=(-7\pm √(25))/(-(1)/(2))\\\\\begin{cases}x=(-7+5)/(-0.5)=(-2)/(-0.5)=\boxed{4}\\x=(-7-5)/(-0.5)=(-12)/(-0.5)=24 \:(\text{Extraneous})\end{cases}

Only
x=4 works when plugged in the original equation. Therefore,
x=24 is extraneous and the only solution is
\boxed{x=4}

User Umesh Patil
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories