Given:
![-5\cos (2x)+4\cos (x)+1=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/92ujj33t9jxw4sojr69r0mq6x2hdjcsliu.png)
Let's solve the equation over the interval:
![\lbrack0,2\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/iixcxg48mr11bdxtjwjmtl35xehgr8ewrp.png)
To find the equation over the interval, apply the double angle identity:
![\begin{gathered} -5(2\cos ^2(x)-1)+4\cos x+1=0 \\ \\ -10\cos ^2(x)+5+4\cos x+1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u9vpbx5nt4tme0czxg5n54r8a756vst6zo.png)
Combine like terms:
![\begin{gathered} -10\cos ^2(x)+5+1+4\cos x=0 \\ \\ -10\cos ^2(x)+6+4\cos x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fn1dfrae3vca15ziueqk4asvj7w6g4tflw.png)
Factor:
![2(-5\cos (x)-3)(\cos (x)-1)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ssk5ub6qzxaafngqcvi2hly1cu32r32l9.png)
Set the individual factors to zero and solve:
![\begin{gathered} -5\cos (x)-3=0 \\ -5\cos (x)=3 \\ \cos (x)=-(3)/(5) \\ \\ \text{Take the cos inverse of both sides:} \\ x=\cos ^(-1)(-(3)/(5)) \\ \\ x=2.2143 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l9khfutdo7hjid0wke2v6j4kevtij58117.png)
Also, the cosine function is negative in the second and third quadrants.
Subtract the reference angle from 2π to find the other angle:
![\begin{gathered} x=2\pi-2.2143 \\ x=4.0689 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vkr0kcx6tp85nzeos3f1rtlyv5hllsrxda.png)
Set the second factor to zero anmd solve for x:
![\begin{gathered} \cos x-1=0 \\ \cos x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xpsjiayfi7ln70b33df14hgmbdsl9ba13d.png)
Take the inverse cosine of both sides:
![\begin{gathered} x=\cos ^(-1)(1) \\ \\ x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yifc7q1gxbccq23j0sqcajcv5reby6lggm.png)
The cosine function is positive in quandrant I and IV, to find the other angle, subtract the reference angle from 2π.
![\begin{gathered} x=2\pi-0 \\ x=2\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ss997bws1826uh6nf4n4sx5xz4p9c591vt.png)
Let's find the period of the function:
![(2\pi)/(b)=(2\pi)/(1)=2\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/c7fjw3vecq82tz0101ptl303vsme7q3bca.png)
Since the period is 2π, values will repeat every 2π radians in all direction.
Here, we have the interval: [0, 2π).
This means 2π is not an included solution.
Therefore, the solutions to the given equation over the interval are:
![x=0,\text{ 2.2143, 4.0689}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1fnkbpq4b1qxg4gl2anj7tsi1evkwthy5o.png)
ANSWER:
![x=0,\text{ 2.2143, 4.0689}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1fnkbpq4b1qxg4gl2anj7tsi1evkwthy5o.png)