ANSWER:
C = 43.61 degrees
A = 71.52 degrees
Step-by-step explanation:
Given:
To find:
The measure of angles C and A
We'll use the below the laws of cosines to determine the measure of angles C and A;
![\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ \\ c^2=a^2+b^2-2ab\cos C \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ua3erf1bqffbzcr6od3o1bo2z44se48wa9.png)
where;
![\begin{gathered} a=22 \\ b=21 \\ c=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ghdc541kdfbpi632cdfbca39yosw75sppr.png)
Let's go ahead and substitute the above values into the equation and solve for C;
![\begin{gathered} c^2=a^2+b^2-2ab\cos C \\ \\ 16^2=22^2+21^2-2*22*21\cos C \\ \\ 256=484+441-924\cos C \\ \\ 256=925-924\cos C \\ \\ 924\cos C=925-256 \\ \\ 924\cos C=669 \\ \\ \cos C=(669)/(924) \\ \\ C=\cos^(-1)(0.7240) \\ \\ C=43.61^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mefhsfdj2bk4kbg5wd1lwv8c812bfnnmi6.png)
Let's go ahead and substitute the above values into the equation and solve for A;
![\begin{gathered} 22^2=21^2+16^2-2*21*16\cos A \\ \\ 484=441+256-672\cos A \\ \\ 484=697-672\cos A \\ \\ 672\cos A=697-484 \\ \\ 672\cos A=213 \\ \\ \cos A=(213)/(672) \\ \\ A=\cos^(-1)(0.31696) \\ \\ A=71.52^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9gu7boyu4z1irci72um92iazn488s2mxca.png)