Given the following expression:
![11^m=13^n](https://img.qammunity.org/2023/formulas/mathematics/college/lqw5spksbw1s9jyscd4412hfd1wn5t2rp9.png)
Solving :
![\sqrt[n]{11^m}=\sqrt[n]{13^n}](https://img.qammunity.org/2023/formulas/mathematics/college/quoi7hq0bogd2jjz5anai4w7137jv9ip9b.png)
![\sqrt[n]{11^m}=13](https://img.qammunity.org/2023/formulas/mathematics/college/uthzsnibgay7grnagmrp2qjkq8scbq4h1b.png)
We can write the root in the following way:
![\sqrt[n]{11^m}=11^{(m)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/k95sxy1gotke5fombdi98cyqh70nufg685.png)
Therefore:
![11^{(m)/(n)}=13](https://img.qammunity.org/2023/formulas/mathematics/college/umbe559yaeo3ahy6ci7b56s6ikvfb1lcld.png)
If m>n :
![11^{(m)/(n)}>11](https://img.qammunity.org/2023/formulas/mathematics/college/m3wkojzzerywz14ov1tgm67beta3mjak04.png)
If m
Therefore, m have to be greater than n.
Finally: if m and n are integers:
![11^{(m)/(n)}=11^{(3)/(2)}=36.48](https://img.qammunity.org/2023/formulas/mathematics/college/7fmljdlpc3ugpvqsqhups398ww3jeub4uj.png)
To get a value equal to 13, n has to be close to m, otherwise the number will be very large.
In this case: (Using the same numbers of the example):
![11^{(m)/(n)}=11^{(3)/(2.8)}=13.0550](https://img.qammunity.org/2023/formulas/mathematics/college/2y83e37l9mdb4w9htv9c09pqgm0xramjhg.png)
Answer: It is impossible to find non-zero integer numbers, because m or n have to be a rational number.