This is a problem of similar triangles, then let's make a sketch of the situation:
Then, those triangles are similar, then if we call x the height of the tree, the theorem of similar triangles states:
![(x)/(5ft7in)=(20ft)/(5ft)](https://img.qammunity.org/2023/formulas/mathematics/college/mcsuzrhu9ik3qha57fxmjwkc0gr1u3lp28.png)
First let's convert 5ft7in to feet:
![\begin{gathered} (1ft)/(12in)=(x)/(7in) \\ x=(7)/(12)=0.58ft \\ \text{Then 5ft7in=5.58ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3il71xyp8e6i5tprdo7i9nxbie8zd2evkl.png)
Now, let's solve for x:
![\begin{gathered} (x)/(5.58ft)=(20ft)/(5ft) \\ x=(20*5.58)/(5) \\ x=(111.7)/(5) \\ x=22.33\approx22ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7clb53spmr4lb3smpp662dd7741qse9c23.png)
Then the height of the tree is 22 ft