102k views
1 vote
Find the solution of the given quadratic equation:x2 + 4x + 4 = 12

User SEAnalyst
by
8.1k points

1 Answer

2 votes

The equation is given as,


x^2+4x+4\text{ = 12}

Re-arranging the equation,


\begin{gathered} x^2+4x+4-12\text{ = 0 } \\ x^2+4x-8\text{ = 0} \\ \end{gathered}

Comparing the equation with the standard form of quadratic equation,


\begin{gathered} ax^2+bx+c\text{ = 0} \\ a\text{ = 1} \\ b\text{ = 4} \\ c\text{ = -8} \end{gathered}

By applying the quadratic formula,


\begin{gathered} x\text{ = }(-b\pm√(b^2-4ac))/(2a) \\ x\text{ = }(-4\pm√(\left(4\right)^2-4*1*-8))/(2*1) \\ x\text{ = }\frac{-4\text{ +}√(16-(-32))}{2}\text{ and x = }\frac{-4\text{ - }√(16-(-32))}{2} \\ x\text{ = }(-4+√(48))/(2)\text{ and x = }\frac{-4\text{ - }√(48)}{2} \end{gathered}

Simplifying further,


\begin{gathered} x\text{ = }(-4+4√(3))/(2)\text{ and x = }\frac{-4\text{ - 4}√(3)}{2} \\ x\text{ = }(2(-2+2√(3)))/(2)\text{ and x = }(2(-2-2√(3)))/(2) \\ x\text{ = -2 + 2}√(3)\text{ and x = -2 - 2}√(3) \\ x\text{ = 2\lparen-1+}√(3))\text{ and x = 2\lparen-1-}√(3)) \end{gathered}

Thus the roots of the given quadratic equation are,


x\text{ = 2\lparen-1+}√(3))\text{ and x = 2\lparen-1-}√(3))

User Thebluedragon
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories