50.9k views
0 votes
Solve the equation. tan^2θ=1

User Wubzy
by
5.5k points

1 Answer

4 votes

Given:


\tan ^2\theta=1

Aim:


We\text{ n}eed\text{ to find the value of }\theta.

Step-by-step explanation:

Take square root on both sides of the given equation.


\sqrt[]{\tan^2\theta}=\sqrt[]{1}
\tan \theta=\pm1


\tan \theta=1,\text{ and }\tan \theta=-1
\text{Use }\tan ((\pi)/(4))=1,\tan (\pi+(\pi)/(4))=1,\text{ }\tan (\pi-(\pi)/(4))=-1,\text{ and }\tan ((3\pi)/(2)-(\pi)/(4))=-1.


\text{Use }\tan ((\pi)/(4))=1,\tan ((5\pi)/(4))=1,\text{ }\tan ((3\pi)/(4))=-1,\text{ and }\tan ((7\pi)/(4))=-1.


\tan \theta=\tan ((\pi)/(4)),\text{ }\tan \theta=\tan ((5\pi)/(4)),\tan \theta=\tan ((3\pi)/(4)),\text{ and }\tan \theta=\tan ((7\pi)/(4)).
\theta=(\pi)/(4),(5\pi)/(4),(3\pi)/(4),(7\pi)/(4)\text{.}

Final answer:

The solution set is


(\pi)/(4),(3\pi)/(4),(5\pi)/(4),(7\pi)/(4).

User Abdul Rauf
by
5.5k points