Given:
![f(x)=-(x+4)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/college/hrhhrs1j1fs3th9lwx5ml1zyzgpzo5ekro.png)
Step-by-step explanation:
a) To draw: The Graph
Let us find the intercepts.
When x = 0, we get
![\begin{gathered} y=-(4)(-1) \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xhym1bc8x7r98l730rjxtseowj9alcg1wr.png)
Therefore, the y-intercept is (0, 4).
The x-intercepts are,
![(-4,0),(1,0)](https://img.qammunity.org/2023/formulas/mathematics/college/wr1yiajefeu8fl424r3g8068bhjz35j4ri.png)
Let us find the vertex.
The given function can be written as,
![\begin{gathered} f(x)=-(x+4)(x-1) \\ =-(x^2+3x-4) \\ =-(x^2+3x+((3)/(2))^2-((3)/(2))^2-4) \\ =-[(x+(3)/(2))^2-(9)/(4)-4] \\ =-[(x+(3)/(2))^2-(25)/(4)] \\ f(x)=(x+(3)/(2))^2+(25)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4nxli0sjglse63wq3e0dk99tiozu9i6geo.png)
So, the vertex is,
![\begin{gathered} (h,k)=(-(3)/(2),(25)/(4)) \\ (or) \\ (h,k)=(-1.5,6.25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fyk3wxrgdq0w0970t4xke709ifrgibyf88.png)
The graph becomes,
b) The equation of symmetry is,
![x=-(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/zpcj32e259df83ndpowsbog6eyaqj3p73e.png)
This line divides the parabola into two equal parts.
c) The coordinates of the vertex is,
![(h,k)=(-1.5,6.25)](https://img.qammunity.org/2023/formulas/mathematics/college/f77lzi7e5d5b0ioeo4vuwhd3ssdv7em8q4.png)
d) Intercepts:
The x-intercepts are,
![(-4,0),(1,0)](https://img.qammunity.org/2023/formulas/mathematics/college/wr1yiajefeu8fl424r3g8068bhjz35j4ri.png)
The y-intercept is (0, 4).