Use pythagorean theorem to find missing sides as follow:
![hypotenuse^2=Leg1^2+Leg2^2](https://img.qammunity.org/2023/formulas/mathematics/college/87qapbmqli6qhi957gk9frvbr5t2ycam8c.png)
In triangle 1 frin the hypotunuse (MT) knowing that the legs are 3m and 13m:
![\begin{gathered} MT^2=(13m)^2+(3m)^2 \\ MT^2=169m^2+9m^2 \\ MT^2=178m^2 \\ MT=√(178)m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/culjnlc6li8i8rb0la9zguzpzon9eo4g0n.png)
In triangle 2 find the hypotenuse (TL) knwing that the legs are 2m and 3m:
![\begin{gathered} TL^2=(3m)^2+(2m)^2 \\ TL^2=9m^2+4m^2 \\ TL^2=13m^2 \\ TL=√(13)m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qx0h38bqs7hww3cbam4gpf7wfh6o2xlhwr.png)
Add the lengths to get the perimeter:
![\begin{gathered} P=MT+TL+ML \\ P=√(178)m+√(13)m+15m \\ P\approx31.95m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tq7bcxvilkzl8jn7tqxzfh2yhqi9ijt4ks.png)
Then, the perimeter of the triangle MLT is (√178 +√13+15)m or approximately 31.95 m