In order to calculate the length of the third side, let's use the law of cosines:
![\begin{gathered} b^2=a^2+c^2-2\cdot a\cdot c\cdot\cos (B) \\ b^2=8.32^2+5.97^2-2\cdot8.32\cdot5.97\cdot\cos (104.7\degree) \\ b^2=69.2224+35.6409-99.3408\cdot(-0.253758) \\ b^2=130.0718 \\ b=11.405 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tf7tw2pluwetbw38vrln2hlg093ppv9vst.png)
Now, let's calculate angle A using law of sines:
![\begin{gathered} (a)/(\sin A)=(b)/(\sin B) \\ (8.32)/(\sin A)=(11.405)/(0.9672677) \\ \sin A=(0.9672677\cdot8.32)/(11.405)=0.70562624 \\ A=\sin ^(-1)(0.70562624) \\ A=44.88\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/coy3knga41hiv4gfuu92pq5n6sn80fxa8q.png)
Since the sum of internal angles in any triangle is equal to 180°, we have:
![\begin{gathered} A+B+C=180 \\ 44.88+104.7+C=180 \\ 149.58+C=180 \\ C=180-149.58 \\ C=30.42\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4o13m4a739z0dtlnnwtuygkn7f3z3nwsl2.png)
Therefore the answer is option A:
A = 44.9°, C = 30.4°, b = 11.41 m