We want to find the values of x and y. To do, we will use some trigonometric ratios to find their values.
Recall that given a triangle of this form
From this triangle we can define the following trigonometric ratios
![\sin (\text{angle)}=(a)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/e38vgovdy63dqczxu8burwbs1ft0lt8qi9.png)
![\cos (\text{angle)}=(b)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/xwl4zycv99azovfba1m7hymdnfo1h6yjn4.png)
![\tan (\text{angle)}=(a)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/8ba9megribzxe96ru1pzo7tkqqst86tte0.png)
Using the angle of 45° as a reference, we can write
![\cos (45)=\frac{3\sqrt[]{2}}{x}](https://img.qammunity.org/2023/formulas/mathematics/college/m74vud4sqenhh4ruswmwcjhusv40p69hcc.png)
Then, if we multiply both sides by x, we get
![x\cdot\cos (45)=3\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/vwuwe7wpiepvux4as6hjed4fwzb61a9v1j.png)
so, if we divide by cos(45) on both sides, we get
![x=\frac{3\sqrt[]{2}}{\cos (45)}](https://img.qammunity.org/2023/formulas/mathematics/college/1fhcc0odypp6gafyr6klgs9ggl6pqggbdg.png)
Using that
![\cos (45)=\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/we2o9q6333apmtz7ozha6no59eofy61q3o.png)
we have that
![x=\frac{3\sqrt[]{2}}{\frac{\sqrt[]{2}}{2}}=\frac{3\cdot2\cdot\sqrt[]{2}}{\sqrt[]{2}}=6](https://img.qammunity.org/2023/formulas/mathematics/college/wino10u2htfm8w47ya2ka7zsglaggetpxh.png)
Now, we want to calculate the value of y. To do so, we can use the tangent as follows
![\tan (45)=\frac{y}{3\sqrt[]{2}}](https://img.qammunity.org/2023/formulas/mathematics/college/rhxf22ekptsrt4jcs7e48z2f16cvq63dxa.png)
then multiplying both sides by 3*sqrt(2) we get
![\tan (45)\cdot3\cdot\sqrt[]{2}=y](https://img.qammunity.org/2023/formulas/mathematics/college/6its1f09aoir1yidtzwssynipx21b2p8pb.png)
Using the fact that
![\tan (45)=1](https://img.qammunity.org/2023/formulas/mathematics/college/hopft6ktfh5svz7r7ppsjbqnkcpe6c0giu.png)
we get that
![y=3\cdot\sqrt[]{2}\cdot1=3\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/g0xbsnhplltsu0dz94zt1hujahppedh4r5.png)
So, from this, we have that x=6 and y=3*sqrt(2)