Answer:
Given that,
![(2x^3+x^2y-15xy^2)/(x^2+3xy)](https://img.qammunity.org/2023/formulas/mathematics/college/itbhqggm84mpl95bfhozrwj4zzk2kymiaj.png)
To reduce the above rational expression to its lowest terms.
Consider the numerator,
![2x^3+x^2y-15xy^2](https://img.qammunity.org/2023/formulas/mathematics/college/q8imewfsro7o10ideianmuyhigs0kpso9m.png)
Take x as common.
we get,
![=x(2x^2+x^{}y-15y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/15cy951sx1yt24xs02vo6qtk3hnla4pzyu.png)
Put xy=6xy-5xy, to simplify,
![=x(2x^2+6xy-5xy-15y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/y4ms6kn2e0mgqzj8g4o3ig5jke73nquoel.png)
![=x(2x(x+3y)-5y(x+3y))](https://img.qammunity.org/2023/formulas/mathematics/college/b0z6o6p04lwdzdunfnswbuvta58icn3osv.png)
Taking x+3y as common we get,
![=x(x+3y)(2x-5y)](https://img.qammunity.org/2023/formulas/mathematics/college/jgrb6zky5fhu1qzhydgf1wj7884wukbrz4.png)
we get,
![=(x^2+3xy)(2x-5y)](https://img.qammunity.org/2023/formulas/mathematics/college/b4v1gdrwx29trch5wuca9e3trkybwxkb6m.png)
Substitute for numerator we get,
![(2x^3+x^2y-15xy^2)/(x^2+3xy)=((x^2+3xy)(2x-5y))/(x^2+3xy)](https://img.qammunity.org/2023/formulas/mathematics/college/vfdyvn0e87vx1zhb31wcvn1w32b8q6ml5q.png)
Cancelling the common term in the numerator ane denominator, we get
![=2x-5y](https://img.qammunity.org/2023/formulas/mathematics/college/a64ueh17ap9mmkcjcwc7k09s672ancfubr.png)