24.6k views
5 votes
Given: Circle O with diameter CDC (-7, -1) and D (1,2)Create the equation of this circle,+-:: (2+3):: (y – 1):: (y + 1):: 25:: 100

Given: Circle O with diameter CDC (-7, -1) and D (1,2)Create the equation of this-example-1
User Salomvary
by
8.8k points

1 Answer

3 votes

(x+3)^2+(y+1)^2=25

Step-by-step explanation

The equation of a circle with center (h,k) and radius r units is given by:


(x-h)^2+(y-k)^2=r^2

then

Step 1

find the diameter of the cirlce:

to do this, we can use the distance between two points formula:

if


\begin{gathered} A\mleft(x_1,y_1\mright) \\ B(x_2,y_2) \end{gathered}

the distance from A to B is


\begin{gathered} d_(AB)=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \end{gathered}

so,let

distance CD=


\begin{gathered} CD=\sqrt[]{(1-(-7))^2+(2-(-4))^2} \\ CD=\sqrt[]{(8)^2+(6)^2} \\ CD=\sqrt[]{64+36} \\ CD=\sqrt[]{100} \\ CD=10 \end{gathered}

hence, the diameter of the circle is


\begin{gathered} \text{diameter}=10 \\ w\text{e know also} \\ \text{diameter}=2\cdot\text{raidus} \\ \frac{\text{diamteter}}{2}=radius \\ \text{replace} \\ (10)/(2)=\text{ radius} \\ \text{radius}=5 \end{gathered}

Step 2

find the center of the circle:

the center of the circle is the midpoint of CD

so


\text{midpoint}=((x_1+x_2)/(2),(y_1+y_2)/(2))

replace


\begin{gathered} \text{midpoint}=((x_1+x_2)/(2),(y_1+y_2)/(2)) \\ \text{midpoint}=((-7+1)/(2),\frac{-4+2_{}}{2}) \\ \text{midpoint}=((-6)/(2),(-2)/(2)) \\ \text{midpoint}=(-3,-1) \\ \end{gathered}

so, the center of the circle is (-3,-1)

Step 3

finally, replace in the formula to get the equation of the circle

let


\begin{gathered} center=\mleft(-3,-1\mright) \\ radius=5 \end{gathered}

replace


\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (x-(-3))^2+(y-(-1))^2=5^2 \\ (x+3)^2+(y+1)^2=25 \end{gathered}

therefore, the answer is


(x+3)^2+(y+1)^2=25

I hope this helps you

User Sufyan Siddique
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.