161k views
4 votes
The spread of a fungal infection in an ant colony

The spread of a fungal infection in an ant colony-example-1

1 Answer

5 votes

Given the equation:


(dy)/(dt)=\frac{y+1}{2\sqrt[\placeholder{⬚}]{t}}

When t=1, y=3 (three percent of the ants are infected).

Replacing in the equation:


(dy)/(dt)=(3+1)/(2√(1))=2

a) The equation of the line tangent to the graph is:


\begin{gathered} y=3+2(t-1) \\ y=3+2t-2=2t+1 \end{gathered}

In t= 1.2.


\begin{gathered} y(t)=2t+1 \\ y(1.2)=2(1.2)+1=3.4 \end{gathered}

The percentage of the colony infected in t=1.2 is 3.4.

b) y explicity:


\begin{gathered} (dy)/(dt)=(y+1)/(2√(t)) \\ \\ (dy)/(y+1)=\frac{dt}{2\sqrt[\placeholder{⬚}]{t}} \end{gathered}

integrating both sides:


\int(dy)/(y+1)=\int\frac{dt}{2\sqrt[\placeholder{⬚}]{t}}

The first one will be:


\begin{gathered} \int(dy)/(y+1) \\ u=y+1 \\ du=dy \\ \int(du)/(u)=ln(u)=ln(y+1)+c \end{gathered}

The second one, will be:


\begin{gathered} (1)/(2)\int\frac{dt}{\sqrt[\placeholder{⬚}]{t}} \\ (1)/(2)\int t^{-(1)/(2)}dt=(1)/(2)*(\frac{t^{-(1)/(2)+1}}{-(1)/(2)+1})=(1)/(2)(\frac{t^{(1)/(2)}}{(1)/(2)})=t^{(1)/(2)}+k \\ \end{gathered}

Substituing:


ln(y+1)+c=t^{(1)/(2)}+k

Using D=k-c


\begin{gathered} ln(y+1)=t^{(1)/(2)}+D \\ y+1=e^{\sqrt[\placeholder{⬚}]{t}}*e^D \end{gathered}

Finally:


y=e^{\sqrt[\placeholder{⬚}]{t}}e^D-1

User Meshtron
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories