2.8k views
3 votes
1) Write an exponential growth model of the form A = A0e^kt to represent the population growth of the world. The initial population was 2 in 4004 BC and is now approximately7.9 billion. Use your model to predict the world’s population 100 years from now.

1 Answer

4 votes

We need to find a function


A=A_0e^(kt)

Suppose that t=0 corresponds to the year 4004BC; then


\begin{gathered} A(0)=A_0e^(k\cdot0)=A_0e^0=A_0\cdot1=A_0 \\ \Rightarrow A(0)=A_0 \\ \text{and} \\ A(0)=2 \\ \Rightarrow A_0=2 \end{gathered}

We need to find the value of k. The current year is 2022 and it corresponds to t=4004+2022=6026; then,


\begin{gathered} 7.9\cdot10^9=A(6026)=2e^(k\cdot6026) \\ \Rightarrow2e^(k\cdot6026)=7.9\cdot10^9 \end{gathered}

Solving for k,


\begin{gathered} \Rightarrow e^(6026k)=3.95\cdot10^9 \\ \Rightarrow\ln e^(6026k)=\ln 3.95\cdot10^9 \\ \Rightarrow6026k\ln e=\ln 3.95\cdot10^9 \\ \Rightarrow6026k=\ln 3.95\cdot10^9 \\ \Rightarrow k=(\ln(3.95\cdot10^9))/(6026) \\ \Rightarrow k=0.003666940\ldots \end{gathered}

Then, the function is


A(t)=2e^(0.003666940\ldots t)

Evaluate for the year 2122, this is t=6126


A(6126)=2e^(0.003666940\ldots\cdot6126)=1.13994\cdot10^(10)

The population in 2122 will be, approximately, 1.14*10^10 people or 11.4 billion

User JPWilson
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories