In the circle with center E , DG and EF are tangents at point D and E respectively.
Therefore,
![\angle\text{FEG = }\angle FDG\text{ = 90}_{\text{ }}\text{ \_\_\_\_\_\_\_\_( Radius }\perp\text{ Tangent )}](https://img.qammunity.org/2023/formulas/mathematics/college/xw2k4tenqtl5b5skk4fdm7a0czyhq8cexj.png)
In quadrilateral DFEG ,
![\begin{gathered} \angle D\text{ + }\angle F\text{ + }\angle E\text{ + }\angle G\text{ = 360} \\ 90\text{ + 140 + 90 + }\angle G\text{ = 360} \\ \angle G\text{ = 360 - 320} \\ \angle G\text{ = 40} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3630yljrfm9fegdks1r3pr6jd4ili6vlp9.png)
Now,
In the circle with center C , AG and BG are tangents at point A and B respectively.
Therefore,
![\angle\text{CAG = }\angle\text{CBG = 90\_\_\_\_\_\_\_( Radius }\perp\text{ Tangent )}](https://img.qammunity.org/2023/formulas/mathematics/college/kdowddmot0dafdg51wrx85ate22sk11mxh.png)
In quadrilateral ACBG ,
![\begin{gathered} \angle A\text{ + }\angle C\text{ + }\angle B\text{ + }\angle G\text{ = 360} \\ 90\text{ + 40 + 90 + }\angle C\text{ = 360} \\ \angle C\text{ = 360 - 220} \\ \angle C\text{ = 140} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h7ruulzvlcpekyqc46wqz64zb7p8ie25c5.png)
Thus the value of m