Answer:
Explanation:
Use law of cosines
c² = a² + b² - 2abcosθ
cosθ = (c² - a² - b²) / -2ab
c = length of AC = √(8 - 5)² + (4 - (-5))² = √90
b = length of AB = √(8 - 6)² + (4 - 3)² = √5
a = length of BC = √(6 - 5)² + (3 - (-5))² = √65
cosθ = (√90² - √65² - √5²) / -2√65√5
cosθ = 20 / -36.05551...
cosθ = - 0.5547001
θ = 123.69°