143k views
0 votes
(8r² – 31,3 – 14 + 574 -11r) = (r – 6).

User Pranzell
by
3.9k points

1 Answer

0 votes

ANSWER


5r^3-r^2\text{ + 2r + 1 remainder -8}

Step-by-step explanation

We want to divide:


8r^2-31r^3-14+5r^4-\text{ 11r}

by


r\text{ - 6}

Let us rearrange:


5r^4-31r^3+8r^2-\text{ 11r - 14 divided by (r - 6)}

To do this, we divide each variable (in the long equation) by r(from r - 6), then multiply that by -6 and subtract from the original equation:


\begin{gathered} (r\text - 6) 5r^4-31r^3+8r^2-\text{ 11r - 14 }\Rightarrow5r^{3\text{ }} \\ \text{ -(5r}^{4\text{ }}-30r^3) \\ \text -r^3+8r^2-\text{ 11r - 14 }\Rightarrow-r^2 \\ \text{ -(-r}^3+6r^2) \\ (r-6)\text ^2\text{ - 11r - 14 }\Rightarrow\text{ 2r} \\ \text{ -(2r}^2\text{ - 12r) } \\ (r-6)\textr - 14 \Rightarrow\text{ 1} \\ \text{ -(r - 6)} \\ \text{ - 8 (remainder)} \end{gathered}

Therefore, the answer is:


5r^3-r^2\text{ + 2r + 1 remainder -8}

User Sherrie
by
4.4k points