82.1k views
5 votes
For positive acute angles A and B, it is known that tan A = 21/20 and cos B = 15/17

Find the value of sin(A + B) in simplest form.

User Bilbohhh
by
7.7k points

1 Answer

3 votes

Given:-


\tan A=(21)/(20),\cos B=(15)/(17)

To find:-


\sin (A+B)

The formula is,


\sin (A+B)=\sin A\cos B+\cos A\sin B

Now we substitute the values. we get,


\sin (A+B)=21*(15)/(17)+20\sqrt[]{(1-\frac{15^2}{17^{^2^{}}})}

Now we get,


\begin{gathered} \sin (A+B)=21*(15)/(17)+20\sqrt[]{(1-\frac{15^2}{17^{^2^{}}})} \\ \sin (A+B)=(315)/(17)+(20)/(17)\sqrt[]{17^2-15^2} \\ \sin (A+B)=(315)/(17)+(20)/(17)*8 \\ \sin (A+B)=(315)/(17)+(160)/(17) \\ \sin (A+B)=(475)/(17) \end{gathered}

So the required value is,


(475)/(17)

User Hate Names
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories