82.1k views
5 votes
For positive acute angles A and B, it is known that tan A = 21/20 and cos B = 15/17

Find the value of sin(A + B) in simplest form.

User Bilbohhh
by
4.3k points

1 Answer

3 votes

Given:-


\tan A=(21)/(20),\cos B=(15)/(17)

To find:-


\sin (A+B)

The formula is,


\sin (A+B)=\sin A\cos B+\cos A\sin B

Now we substitute the values. we get,


\sin (A+B)=21*(15)/(17)+20\sqrt[]{(1-\frac{15^2}{17^{^2^{}}})}

Now we get,


\begin{gathered} \sin (A+B)=21*(15)/(17)+20\sqrt[]{(1-\frac{15^2}{17^{^2^{}}})} \\ \sin (A+B)=(315)/(17)+(20)/(17)\sqrt[]{17^2-15^2} \\ \sin (A+B)=(315)/(17)+(20)/(17)*8 \\ \sin (A+B)=(315)/(17)+(160)/(17) \\ \sin (A+B)=(475)/(17) \end{gathered}

So the required value is,


(475)/(17)

User Hate Names
by
5.2k points