Given:
half life of substance = 40 minutes
If the substance starts with 400g ang only 2g is left.
To find the time elapsed we have:
![\text{Elapsed time = }halflife*\frac{\log (\frac{start\text{ amount}}{end\text{ amount}})}{\log 2}](https://img.qammunity.org/2023/formulas/mathematics/college/x29pj4tvgiz66hjl4ynz1jrltkk2ammmnk.png)
Thus, we have:
![\begin{gathered} \text{Elapsed time = 40 }*(log((400)/(2))/\log 2) \\ \\ \text{ = 40 }*\text{ }(\log 200)/(\log 2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ape2ls7w53mb2a1yojpynmpg574vgez8dh.png)
Solving further:
![40*7.64\text{ = }305.75](https://img.qammunity.org/2023/formulas/mathematics/college/237pe6wvqfnyybphsfxgjuiszzcf58hooc.png)
Therefore, the time elapsed until there is only 2g left is 305.75 minutes
ANSWER:
305.75 minutes