Two triangles are similar if the ratios of the corresponding sides are equal.
If ΔRST is similar to ΔUVW, we have that:
![(RS)/(UV)=(ST)/(VW)=(RT)/(UW)](https://img.qammunity.org/2023/formulas/mathematics/college/5u3jree21fekxxfg42ieh5y28a35z2m43t.png)
We are given the following parameters:
![\begin{gathered} RS=102 \\ ST=96 \\ RT=80 \\ VW=24 \\ UW=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nimwohhoapp4agj260tbjxnezgn4qu1v81.png)
Thus, we have that:
![(102)/(UV)=(96)/(24)=(80)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/bhh4xycy3a0n3i57zglz55amosoq7rnk83.png)
Comparing the first two ratios, we have:
![\begin{gathered} (102)/(UV)=(96)/(24) \\ (102)/(UV)=4 \\ UV=(102)/(4) \\ UV=25.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p2ep1mtbojovegylsfac7d9uc7q8csidb6.png)
Hence, the perimeter of ΔUVW is calculated to be:
![P=UV+VW+UW=25.5+24+20=69.5](https://img.qammunity.org/2023/formulas/mathematics/college/jyof2ahu0s9eklw99mqxp09qu5165xhzi9.png)
The perimeter is 69.5.