Given the Complex Number:
![z=1-i√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/vwz2vu7d2w2qjh55zbjhtp8am0jnhjsm7s.png)
You can identify that it is written in Rectangular Form:
![z=x+yi](https://img.qammunity.org/2023/formulas/mathematics/college/4h8d9ois8cxinm4q6ixxcjoraouwcf2kwt.png)
By definition, the coordinates in Rectangular Form are:
![(x,y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fc1644jwszkab41ywkr1o5torpamtdlony.png)
And in Polar Form:
![(r,\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/js44i15nht2a8iofbwuom8669hh33vizoz.png)
In this case, you can identify that:
![\begin{gathered} x=1 \\ y=√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5h6w6ovtcodsy4g1byh4wh70qnpc11nl3d.png)
In order to convert them to Polar Form, you need to use these formulas:
![\begin{gathered} x=r\cdot cos\theta \\ y=r\cdot sin\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nv9w6xcrlqevz04m5z9zztvs8r6df0q5ep.png)
Use this formula to find "r":
![r=√(x^2+y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/af6slq3fsqw8a05l0wffwqlfovbnwnr1m0.png)
Then, this is:
![r=\sqrt{1^2+(√(3))^2}=2](https://img.qammunity.org/2023/formulas/mathematics/college/5lwjzqvllz0leiij7c3u77rplvbuhlzc43.png)
You need to find the angle. You can use this formula:
![\theta=tan^(-1)((y)/(x))](https://img.qammunity.org/2023/formulas/mathematics/college/tapkqdsy7j4hnizuhn6mor6skpsm4mjlwo.png)
Therefore the angle is:
![\theta=tan^(-1)(-√(3))+360\text{ \degree}](https://img.qammunity.org/2023/formulas/mathematics/college/kglcsgoyjjhnkz7cxtp3wxfasdpttrlksh.png)
![\theta=300°](https://img.qammunity.org/2023/formulas/mathematics/college/5ybcss6i4b90opuwyhfebl52gwa9jgim14.png)
Then:
![z=2cos300\text{\degree}+2isin300\text{\degree}](https://img.qammunity.org/2023/formulas/mathematics/college/dv0lvghul9m5vw6fj9udw1z1a6xp4yf2bw.png)
Hence, the answer is: Last option.