199k views
0 votes
Quick question won’t be able to stay on the session the whole time. Please don’t leave if I don’t replyquestion 2.1 - 2.2

Quick question won’t be able to stay on the session the whole time. Please don’t leave-example-1

1 Answer

6 votes

Answer

2.1 The mole of Ba(OH)₂ that react = 5.33 mol

2.2 The moles of H₂SO₄ that are left unreacted = 7.17 mol

Step-by-step explanation

Given:

Volume of Ba(OH)₂ = 15 cm³ = (15/1000) = 0.015 dm³

Concentration of Ba(OH)₂ = 0.08 mol/dm³

Volume of H₂SO₄ = 20 cm³ = (20/1000) = 0.020 dm³

Concentration of H₂SO₄ = 0.25 mol/dm³

Equation: Ba(OH)₂ (aq) + H₂SO₄ (aq) -----> BaSO₄ (s) + H₂O (l)

What to find:

2.1 The mole of Ba(OH)₂ that react.

2.2 The moles of H₂SO₄ that are left unreacted.

Step-by-step solution:

Step 1: Convert the given concentrations of the reactants to moles.


\begin{gathered} Concentration=\frac{Moles}{Volume\text{ }in\text{ }L} \\ \\ Moles\text{ }of\text{ }Ba(OH)_2=\frac{0.08\text{ }moldm^(-3)}{0.015\text{ }dm^(-3)}=5.33\text{ }mol \\ \\ Moles\text{ }of\text{ }H_2SO_4=\frac{0.25\text{ }moldm^(-3)}{0.020\text{ }dm^3}=12.5\text{ }mol \end{gathered}

Step 2: 2.1 The mole of Ba(OH)₂ that react.

Comparing the moles of each of the reactants in step 1 with the mole ratio of the reactants in the given reaction, it can be concluded that 5.33 moles of Ba(OH)₂ react.

Hence, the mole of Ba(OH)₂ that react is 5.33 mol.

Step 3: The moles of H₂SO₄ that are left unreacted.

From the given balanced chemical equation for the reaction; the mole ratio of Ba(OH)₂ to H₂SO₄ is 1:1

Also, 5.33 moles of H₂SO₄ will react out of the 12.5 moles of H₂SO₄.

Therefore, the moles of H₂SO₄ that are left unreacted = (12.50 mol - 5.33 mol) = 7.17 mol

The moles of H₂SO₄ that are left unreacted would be 7.17 moles

User Riga
by
3.3k points