We have
vi=initial velocity=10.2 m/s
θ=25°
a)
We have that for
![\begin{gathered} v_(ix)=10.2\cos (25) \\ v_(iy)=10.2\sin (25) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ykn6gskzz58m6epo2eatzyi1ur4cf4lazu.png)
Then for
![v_x=v_(ix)+at](https://img.qammunity.org/2023/formulas/physics/college/79y1yewtgqzfh0zfmwps41nucwut56jgtd.png)
![\begin{gathered} v_x=10.2\cos (25)+(0)(0.25) \\ v_x=10.2\cos (25) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t0o8u427o6dmgqgg57f1j5h5shslt85ddr.png)
For vy
![\begin{gathered} vy=v_(iy)+(-9.8)(t) \\ v_y=10.2\sin (25)+(-9.8)(0.25)=1.86\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/d93hpv2m3dsrpwiedrrgc9sycyqstpdbhp.png)
For the magnitude of the velocity
![v=\sqrt[]{(10.2\cos 25)^2+1.86^6}=9.43\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/6qyww1r32wdbqajis3hnj9ui4psk6cda21.png)
For the direction of the velocity
![\theta=\tan ^(-1)(0.2)=11.40\text{ \degree}](https://img.qammunity.org/2023/formulas/physics/college/sj7ky85bni1chwbj23maqgb91thtb7rs2c.png)
For part b)
![vx=10.2\cos (25)\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/qkj7lyvx0jp3dqtbo8w1oln4qafxqv1yhd.png)
![vy=10.2\sin (25)+(-9.8)(0.5)=-0.589\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/uhwoisrhjl8w0gd8l08qyoqwsnmepccime.png)
For the magnitudeof the velocity
![v=\sqrt[]{(10.2\cos (25))^2+(-0.589)^2}=9.26\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/546zec6jdjerdifbpgdjvc0tbrsl9hu0ap.png)
For the direction of the velocity
![\theta=\tan ^(-1)((-0.589)/(10.2\cos (25)))=-3.65\text{ \degree}](https://img.qammunity.org/2023/formulas/physics/college/j5jvqcoi1oegh8pfhf1xqe1tj15w3b1skh.png)
For c)
Because of the negative sign that we obtain in the velocity, we can say that the greatest height is located before the 0.5 m