We are asked to determine the sum of the two vectors F1 and F2. To do that we will use the following triangle:
Therefore, substituting the magnitudes of the vectors the triangle is:
Now, to determine the magnitude of the resultant force "R" we will use the cosine law:
![c^2=a^2+b^2-2ab\cos\theta](https://img.qammunity.org/2023/formulas/physics/college/6d2fh1zyfigif4492u8poit3v6262y2yho.png)
Where:
![\begin{gathered} c=\text{ opposite side to the 120\degree angle} \\ a,b=\text{ other sides of the triangle} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/okb9dgidcn4kz0fvuexexepwwsxxen55y7.png)
Now, we substitute the values:
![R^2=5^2+5.9^2-2(5)(5.9)\cos(121)](https://img.qammunity.org/2023/formulas/physics/college/e1voivu25xxot4glncxmb4yh62lvfu3rcb.png)
Solving the operations we get:
![R^2=90.25](https://img.qammunity.org/2023/formulas/physics/college/avjmynzm3lbh1fi3rhb3lkzdn1ua8nf03q.png)
Now, we take the square root to both sides:
![\begin{gathered} R=√(90.25) \\ R=9.5 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/66ymerp36gfv1ky8t1lj5ipctbiuu5elnt.png)
Therefore, the magnitude of the sum of vectors is 9.5
Now, we determine the angle:
We need to determine angle "y". To do that we will determine the angle "x" using the sine law:
![(\sin A)/(a)=(\sin B)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/kmz05v36df1zlnwjymjkk51p4seohz92on.png)
Where:
![\begin{gathered} a=\text{ side opposite to angle A} \\ b=\text{ ide oppoite to angle B} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/guzyzs726aa1z1fvk7o2wewcj0ytskxe08.png)
Now, we plug in the known values:
![(\sin x)/(5)=(\sin121)/(9.5)](https://img.qammunity.org/2023/formulas/physics/college/9mtx6gy445uv7mt9z5d62lbs2aqvavvsh9.png)
Now, we multiply both sides by 5:
![\sin x=5(\sin121)/(9.5)](https://img.qammunity.org/2023/formulas/physics/college/j74urtmcoe88a73u8sf4fnfy5s6jovxyux.png)
Solving the operations:
![\sin x=0.45](https://img.qammunity.org/2023/formulas/physics/college/rx75ygi8mg9w8n05xp7utnz6n8dd9zbxs0.png)
Now, we take the inverse function of the sine:
![x=\sin^(-1)(0.45)](https://img.qammunity.org/2023/formulas/physics/college/orwu1uykcvrxicg4qgkr3o9v1w4frao4no.png)
Solving the operations:
![x=26.83](https://img.qammunity.org/2023/formulas/physics/college/wddp9xiac512so2qu4k1yvyoiizk2i7y0f.png)
Now, we have that since F1 is a vertical force then the sum of angles "x" and "y" must add up to 90:
![x+y=90](https://img.qammunity.org/2023/formulas/mathematics/college/b7rez4po2lfd4xmyyoqr09e5vrvnco1rko.png)
Now, we substitute the value of angle "x":
![26.83+y=90](https://img.qammunity.org/2023/formulas/physics/college/wfl64406wy1yqnqyycwyugjz14mg67delp.png)
Now, we subtract 26.83 from both sides:
![\begin{gathered} y=90-26.83 \\ y=63.17 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/14hsio2bq537tagqa5orw5f8yim9tcrkog.png)
Therefore, the angle of the sum of vectors is 63.17°.