The equation of the given parabola is
![y=(1)/(8)x^2_{}+2x](https://img.qammunity.org/2023/formulas/mathematics/college/tyvn95qfn28usdy637ynijjnk7inc4ziga.png)
Rewrite the equation in the vertex form
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
The equation becomes
![\begin{gathered} y=(1)/(8)x^2+2x \\ y=(1)/(8)(x^2+16x) \\ 8y=x^2+16x \\ 8y=x^2+6x+64-64 \\ 8y=(x+8)^2-64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k7wczroj12p8kikga0pv2bumqtcsiax86i.png)
Divide through the equation by 8
This gives
![y=(1)/(8)(x+8)^2-8](https://img.qammunity.org/2023/formulas/mathematics/college/mitdwr0hsoy5w6y3zochi1ut26f8i8ix85.png)
Comparing the equation with the vertex form
It follows
![a=(1)/(8),h=-8,k=-8](https://img.qammunity.org/2023/formulas/mathematics/college/w88yd14hrq94z2mhd0ahwvxuo9u5clj1mo.png)
The focus of a parabola in vertex form is given as
![F=(h,k+(1)/(4a))](https://img.qammunity.org/2023/formulas/mathematics/college/y02wfs8mcwx379654obpa15hxxojgqdw7a.png)
Substitute h = -8, k = -8 and a = 1/8 into the formula for focus
This gives
![F=(-8,-8+(1)/(4((1)/(8))))](https://img.qammunity.org/2023/formulas/mathematics/college/swy309ycsw3q2bdrckl38atmxuesrpb068.png)
Simplify the expression
![\begin{gathered} F=(-8,-8+(1)/((1)/(2))) \\ F=(-8,-8+2) \\ F=(-8,-6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/29haw8xagkdq5g66or58k0ygpfhlczgide.png)
Therefore, the focus of the parabola is at (-8, -6)