187k views
1 vote
Select all the correct answers.Which vectors are unit vectors?1 一32l -一》《完,表》口 u={1, 1}1-(美)

1 Answer

2 votes

The unit vector has a magnitude = 1

So, for the given vectors, we will find the magnitude of every vector


\begin{gathered} u=<\frac{\sqrt[]{3}}{2},-(1)/(2)> \\ |u|=\sqrt[]{(\frac{\sqrt[]{3}}{2})^2+(-(1)/(2))^2}=\sqrt[]{(3)/(4)+(1)/(4)}=\sqrt[]{(4)/(4)}=\sqrt[]{1}=1 \end{gathered}

So, it is a unit vector


\begin{gathered} u=<-\frac{2}{\sqrt[]{5}},\frac{1}{\sqrt[]{5}}> \\ |u|=\sqrt[]{(-\frac{2}{\sqrt[]{5}})^2+(\frac{1}{\sqrt[]{5}})^2}=\sqrt[]{(4)/(5)+(1)/(5)}=\sqrt[]{(5)/(5)}=1 \end{gathered}

So, it is a unit vector


\begin{gathered} u=<1,1> \\ |u|=\sqrt[]{1^2+1^2}=\sqrt[]{1+1}=\sqrt[]{2}=1.414 \end{gathered}

So, it is not a unit vector


\begin{gathered} u=<-\frac{5}{\sqrt[]{6}},\frac{1}{\sqrt[]{6}}> \\ |u|=\sqrt[]{(-\frac{5}{\sqrt[]{6}})^2+(\frac{1}{\sqrt[]{6}})^2}=\sqrt[]{(25)/(6)+(1)/(6)}=\sqrt[]{(26)/(6)}=2.08 \end{gathered}

So, it is not a unit vector

So, the correct options are: 1 and 2

User Mitul Bhalia
by
5.8k points