For the surface area:
We have:
• Two triangles with base = 21 cm and height = 8 cm :
![2\cdot(21\cdot8)/(2)=168](https://img.qammunity.org/2023/formulas/mathematics/college/jer1jmpu4ecg0gxcjurdpiu0zvwxp11i1r.png)
• A 21 cm x 30 cm rectangle:
![21\cdot30=630](https://img.qammunity.org/2023/formulas/mathematics/college/706vb6g7khr0imavvf9ju0zzevhy6qtu2b.png)
• A 17 cm x 30 cm rectangle:
![17\cdot30=510](https://img.qammunity.org/2023/formulas/mathematics/college/oh9q5fcbxvhg480hxj1jovyubpri29z13h.png)
• A 10 cm x 30 cm rectangle:
![10\cdot30=300](https://img.qammunity.org/2023/formulas/mathematics/college/8yy1yq02f43x818v21uo4zw72edza2m4gw.png)
Adding up the surface area of all the faces, we'll get the total surface area of the prism:
![168+630+510+300=1608](https://img.qammunity.org/2023/formulas/mathematics/college/3ups60qy3nigw81cfjhvu135bqtz8ve9tt.png)
Thereby, the surface area of the prism is 1608 square centimiters
For the volume:
We can see the prism as a body with triangular base and a height of 30 cm. To calculate teh volume, we calculate the area of the base and multiply it by the height.
The base is a triangle with base = 21 cm and height = 8 cm :
![(21\cdot8)/(2)=84](https://img.qammunity.org/2023/formulas/mathematics/college/21zsmkmgi4cd0skntgtkqjyjyd4js0mvib.png)
Multiply by the height to get the volume:
![84\cdot30=2520](https://img.qammunity.org/2023/formulas/mathematics/college/3p6kzy83ami9o7w3b3rn72qi28t1aymyrs.png)
We get that the volume of the prism is 2520 cubic centimiters.