Consider the standard form of a quadratic equation is,
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
It's vertex (h,k) is given by,
![\begin{gathered} h=(-b)/(2a) \\ k=f((-b)/(2a)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7941c6oal7qqvj69vamc623s31i0dn13f3.png)
Now consider the given equation,
![y=x^2-2x+4](https://img.qammunity.org/2023/formulas/mathematics/college/otm8xkvqgu8ucsnhr20hn6h0lrsd1svcxh.png)
So its vertex will be,
![\begin{gathered} h=(-(-2))/(2(1))=1 \\ k=(1)^2-2(1)+4=1-2+4=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vn6ksornc4z1ouxfhszbsnkhgyhnn1jxpr.png)
So the vertex of the quadratic equation lies at (1,3).
Now, observe the given graphs.
It is found that only first graph shows the vertex at point (1,3).
So option a will be the correct choice.