Answer:
• Discriminant =0
,
• Number of Solutions = One repeated root
Step-by-step explanation:
Given the quadratic equation below:
![2x^2+12x+20=2](https://img.qammunity.org/2023/formulas/mathematics/college/jdkyd9xt6qn1qj5k1a7bfps6qqdgogjtv6.png)
First, we express it in the general form of a quadratic equation: ax²+bx+c=0
![\begin{gathered} 2x^2+12x+20-2=0 \\ 2x^2+12x+18=0 \\ \implies a=2,b=12,c=18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pd0l2rkx9uohkpdwqk7i2bew0b22pcxkcr.png)
Next, we find the discriminant.
![\begin{gathered} \text{Discriminant,}D=b^2-4ac \\ =12^2-4(2)(18) \\ =144-144 \\ D=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rqdnqko4fz233yhkxwbyq1bonddogcidqm.png)
Since the discriminant equals 0.
The quadratic equation has One Repeated Root.