As per given by the question,
There are given that two function,
![\begin{gathered} g(x)=(x-2)/(x+1) \\ h(x)=2x-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b365vly6ihl2xu5ss6kqggwonwk0xuiynn.png)
Now,
For find the value of (g.h)x,
Put the value of h(x) into the g(x).
So,
From the given function;
![(g\cdot h)x=(x-2)/(x+1)\cdot2x-5](https://img.qammunity.org/2023/formulas/mathematics/college/92l22xpfccimx2qvziz7xv16y1t2mxzv1c.png)
Then,
Put the value of h(x) into g(x) instead of x.
So,
![(g\cdot h)x=(2x-5-2)/(2x-5+1)](https://img.qammunity.org/2023/formulas/mathematics/college/r9n3wp9p1v7wg2kklqawsz7v6bqi8uabf2.png)
Now, solve the above function.
![\begin{gathered} (g\cdot h)x=(2x-5-2)/(2x-5+1) \\ (g\cdot h)x=(2x-7)/(2x-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9r6rh65umy9lp1k6w60fuimwp9f1nikaq2.png)
Now,
Domain of the above function,
From the fuction;
![(g\cdot h)x=(2x-7)/(2x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/cqhg3gw9ixka6n3xedm0grf4149n81a16p.png)
For the domain of the given function ,
Set the denominator in equal to 0.
Then,
![\begin{gathered} 2x-4=0 \\ 2x=4 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4i3i83pvxmhghzhc8dblkl8und9knwhz8.png)
The domain is all values of x that make the expression defined in interval notation is;
![(-\infty\text{ 2)}\cup(2,\text{ }\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/oqwtyxzqa164ia15knsj4rzn53kxtsxpd2.png)
Hence, the value of (g.h)x and their domain is given below;
![\begin{gathered} (g\cdot h)x=(2x-7)/(2x-4) \\ \text{Domain}=(-\infty\text{ 2)}\cup(2,\text{ }\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bfexxofmlxa5qitcjeoip1iqprr6j6s51v.png)