Answer:
4√2 cm
Explanation:
ABCD is a square.
Each side measures 8 cm.
So,
AB = BC = CD = AD = 8 cm
P, Q, R, and S are mid - points of ABCD.
P is the mid - point of AB.
So,
AP = PB
AP + PB = AB
AP + AP = AB
2AP = 8
AP = 8 / 2
AP = 4 cm
S id the mid - point of AD.
So,
DS = SA
DS + SA = AD
SA + SA = AD
2SA = 8
SA = 8 / 2
SA = 4 cm
Property of a square : The angle between two sides is 90°.
So,
The angle between side SA and AP is 90°.
So,
SA, AP and SP forms a right angled triangles.
By Pythagoras theorem,
( SP)² = ( SA )² + ( AP )²
( SP )² = 4² + 4²
= 16 + 16
( SP )² = 32
SP = √32
SP = 4√2 cm
Since PQRS is also a square.
In square, all sides are equal.
So,
PQ = QR = RS = SP
Since SP = 4√2 cm
Hence,
PQ = 4√2 cm
Therefore,
the length of PQ is 4√2 cm.