Let Janet's speed be x
Bonnie's speed would be 5 + x
The time for Bonnie to travel 60 miles is
![\frac{dis\tan ce}{\text{speed}}=(60)/(5+x)](https://img.qammunity.org/2023/formulas/mathematics/college/vs6v8slhknrzjrunmj3g4usnu3kimuwz5k.png)
The time for Janet to travel 75 miles is
![(75)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/zmzkpkcwhamtmarv234l5wg1ek88hnd0cf.png)
Thus we have from the information
![\begin{gathered} (60)/(5+x)=(75)/(x)-1 \\ (60)/(5+x)=\text{ }(75-x)/(x) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7p96gsyihwkd5tj5g6nh9mo7rfhz4dqhx6.png)
Cross multiply
![\begin{gathered} 60x=(5+x)(75-x) \\ 60x=375-5x-x^2+75x \\ x^2-10x-375=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/srzdda5hp6ywuhfa2dup5c9fqkrwpu5zsa.png)
Solving this quadratic equation for x, we have
![\begin{gathered} x^2-25x+15x-375=0 \\ x(x-25)+15(x-25)=0 \\ (x+15)(x-25)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nligwm9wjy0t7wrzluvdvw0vz5q0jf6atc.png)
Thus x = -15 or 25.
The speed cannot be a negative number, so x = 25
Therefore Bonnie's speed = 25 miles per hour
and Janet's speed = 25 - 5 = 20 miles per hour