Given the figure, we can deduce the following information:
1. The measure of angle T is 45°.
2. The leg TS is:
![32\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/vut9gxoinpv0019bfzktgt1z02h4ov41oe.png)
To determine SU, we use the formula:

The opposite and hypotenuse sides are shown in the figure below:
We plug in what we know:
![\begin{gathered} \sin (\theta)=\frac{opposite}{\text{hypotenuse}} \\ \sin (45)=\frac{SU}{32\sqrt[]{3}} \\ \text{Simplify and rearrange} \\ SU=\sin (45)(32\sqrt[]{3}) \\ SU=16\sqrt[]{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f5amx1i6afrthxg8xt7g1r5u9n6cwu9j72.png)
Therefore, the answer is:
![\begin{gathered} SU=16\sqrt[]{6} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/je8givvha40pvm8uectdpszg1nsp7btydh.png)