103k views
2 votes
Use the function f and the given real number a to find (f -1)'(a). (Hint: See Example 5. If an answer does not exist, enter DNE.)f(x) = cos(3x), 0 ≤ x ≤ /3, a = 1

Use the function f and the given real number a to find (f -1)'(a). (Hint: See Example-example-1

1 Answer

3 votes

Given:


f(x)=\cos(3x),0\leq x\leq(\pi)/(3),a=1

Required: Derivative of inverse of x at the point x = 1

Explanation:

Use the formula


(f^(-1))^(\prime)(x)=(1)/(f^(\prime)(f^(-1)(x)))

Substitute 1 for x.


(f^(-1))^(\prime)(1)=(1)/(f^(\prime)(f^(-1)(1)))\text{ ...\lparen1\rparen}

First, find the inverse of f(x).

Let y = f(x). Then y = cos(3x).

Exchange x and y gives x = cos(3y).

Solve for y, which will be the inverse of f(x).


\begin{gathered} 3y=\cos^(-1)x \\ y=(1)/(3)\cos^(-1)x \end{gathered}

So,


f^(-1)(x)=(1)/(3)\cos^(-1)(x)

Substitute 1 for x.


\begin{gathered} f^(-1)(1)=(1)/(3)\cos^(-1)(1) \\ =0 \end{gathered}

Now, find the derivative of f(x).


f^(\prime)(x)=-3\sin(3x)

Thus, from equation (1),


\begin{gathered} (f^(-1))^(\prime)(1)=(1)/(f^(\prime)(f^(-1)(1)))\text{ ...\lparen1\rparen} \\ =(1)/(f^(\prime)(0)) \\ =(1)/(-3\sin(0)) \end{gathered}

which is not defined. So, the answer not exists.

User Larssg
by
3.6k points